
Embedded LS-PIV for Measuring Stream Flows
Ashish Dwivedi, Kyle Liang, Justin Nguyen, Jun Taguchi

Abstract—Many Internet of Things (IoT) applications, envi-
ronmental monitoring for example, require deploying sensors or
devices into the field. These applications require special attention
to the energy budget because devices designed for this purpose
should be battery powered and survive for years. To help the
design of these energy-aware system, CommonSense has been
developed as an extensive computing platform.

United States Geological Survey (USGS) has been interested
in monitoring streamflow by calculating the discharge amount.
The flow analysis methodology is based on optical imagery and
Large-scale particle image velocimetry (LS-PIV) algorithm. LS-
PIV allows us to calculate the velocity of features in these images.
However, low-memory implementations of this algorithm (utiliz-
ing direct cross-correlations) can be computationally intensive,
O(N4), and cannot be handled by embedded devices that have a
limitation on RAM and parallelism. As a result, LS-PIV is used as
a post-processing method thus far. An embedded implementation
of LS-PIV will enable deploying a real-time sensing system onto
static platforms, i.e., bridges, or mobile platforms, i.e., drones.

In this paper, we target CommonSense as a computation
platform and propose the optimized PIV algorithm with two
operation modes: “Graded” PIV for the velocity field mea-
surements and Discharge Measurement PIV for the discharge
measurements. Both operation modes reduce the amount of
computation by focusing on the critical part of the images to
yield accurate results.

The estimated battery life of the proposed algorithm with two
modes varies from six months to two years if the device with a
12,000 mAh LiPo battery reports the result ten times per hour,
exceeding the current measurement rates of USGS stream gage
stations. The velocity field measurement mode is more expensive
than the discharge measurement mode because the number of
image windows used for computation is large. The energy for
computation is dominant in our system, so future iterations of the
project would be focused on reducing the energy of computation.

Index Terms—Internet of Things, IoT, particle image velocime-
try, PIV, Large-scale particle image velocimetry, LS-PIV, duty
cycle, energy aware computation

I. INTRODUCTION

The USGS measures stream flows since they are critical
for long-term tracking and modeling/forecasting to ensure
that federal water priorities and responsibilities can be met.
Effective management of the Nation’s rivers thus relies upon
discharge data provided by USGS stream gages, but the gage
network is sparse and has a relatively low update rate1. In
addition, data collection during high flows can place personnel
at risk. For all of these reasons, the agency seeks to develop
innovative, non-contact methods for measuring river discharge.
PIV is an algorithm that can be applied to this remote-
sensing task and is actively being researched for these types
of applications [1].

1https://www.usgs.gov/mission-areas/water-resources/science/usgs-
streamgaging-network

PIV is a widely used algorithm used for measuring stream
flows using optical data, but can be computationally intensive,
so it is performed as a post-processing step after data collection
[1]–[3]. Currently no open-source systems exist which can
perform PIV in real-time on the remotely deployed sensors
which collect the data and performs PIV analysis to report the
velocity or the discharge rate of the stream.

The team we collaborated with at the USGS using
PIVLab [4], [5] to run the PIV algorithm on imagery captured
by helicopters [2]. PIVLab runs on MATLAB, on desktops,
which is obviously very far from the real time reporting of
the desired data. The USGS wants to develop an embedded
solution for the task which can provide real time data captur-
ing, preprocessing on the data, PIV run on the images, sending
back the data on the USGS centers. This project however, does
not focus on the first two steps. We start with the preprocessed
image and provide the velocity and discharge data using PIV.

II. STAKEHOLDER REQUIREMENTS

A. Expected Use Cases

There are two major use cases that our stakeholder, the
USGS, is interested in applying PIV: imagery taken from a
stable platform (like the side of a bridge) or imagery taken
from a camera mounted to a mobile platform (such as a UAS,
or helicopter). In the former, the images taken are very stable
and do not need image stabilization or alignment [1], [3]. In
the latter, the images need to go through an additional step
of stabilization and/or alignment before they can be used for
PIV algorithm.

B. System Requirements

The USGS want an embedded system that can perform PIV
on-board at a reasonable rate and with a long lifetime for
remote deployments. The system should be able to measure
the discharge rate and the field velocity of the flow. More
specifically, they expect our team to meet following expecta-
tion:

1) PIV implementation with decent accuracy compared to
the baseline

2) Improvement in the current measurement rates which is
15 minutes2

3) Lifetime of the system should be > 3 months

The results from PIVLab [4], [5] in addition to ground-truth
data measured via ADCP will serve as our baseline.

2https://waterdata.usgs.gov/nwis/rt Accessed November 2020



III. PROJECT SCOPE

Given the stakeholder’s requirements, we define the possible
use cases of embedded LS-PIV system: static platform and
mobile platform cases. In this project, we focus on the the
static platform case, which is an essential first step of realizing
LS-PIV on in both use cases. We break down this objective
and define the following three goals.

The first goal is to create an embedded implementation
of the PIV algorithm targeted to run on real-time embedded
systems. As mentioned previously, LS-PIV can be compu-
tationally intensive, and there are no versions targeting real
time use. Thus, we targeted CommonSense as a platform, and
developed the PIV algorithm which can be deployed to a static
platform such as bridges. The accuracy of the result is the
metric to evaluate our implementation.

The second, and most challenging, goal is to optimize
the algorithm and software structure for minimal energy
consumption. The device should survive for years. In this
sense, computation time is also critical; as computation time
decreases, we can save more energy.

The third goal is defining the energy budget and software
interface to the CommonSense board and designing the final
product. Our study focuses on core algorithm development for
implementing PIV and subsequent work on the implementa-
tion of a real-time LS-PIV system can build on the algorithm
described here.

We proposed two operation modes: discharge measurement
mode and velocity field measurement mode to achieve these
goals. These modes will be discussed in section V.

A. Alaskan Dataset

The image data set we used for analysis are of size
1580x2880. These were taken periodically at a 1Hz frequency
aerially from a helicopter of the Tanana River and have a
15cm/pixel conversion rate [2]. The dataset is comprised of
raw image sequences and image sequences that have been
aligned, geo-referenced, and preprocessed to maximize con-
trast of the sediment flow used for PIV [1].

IV. PIV ALGORITHM

Particle Image Velocimetry (PIV) is a mature and essential
velocity measurement technique in fluid dynamics. PIV is
used extensively in academic laboratories as well as industrial
settings. PIV was originally developed for use in laboratory
plumes where the flow can be seeded with particles and illumi-
nated with a laser light sheet [6], [7]. Velocity is estimated by
comparing successive images and identifying the displacement
that maximizes correlation between frames A and B. As
with any velocity, the PIV algorithm essentially measures the
distance traveled by the fluid, 4x over a specific time period
4t, and uses the well know formula of v = 4x/4t [6]–
[8]. To track the displacement, 4x, the PIV algorithm tracks
specific points in the fluid. To get the points, a PIV setup
typically requires a camera setup vertically over the flow of
the river [1], [3]. Depending on the illumination in the flow
there may or may not be any additional light source. In our

case, since we are measuring the flow and discharge of the
river, the dataset we are using described in section III-A we
have ambient sunlight and hence do not need any additional
light source. A typical PIV setup is as shown in Figure 1.

(a) Laboratory PIV setup with laser
and camera

(b) Two successive frames used to
measure the velocity of the fluid

Fig. 1: Typical PIV setup and measurement

PIV algorithm starts with picking a pair of sequential images
for performing a 2D cross-correlation. Optionally the resulting
cross-correlation matrices can be aggregated (summed) in a
technique known as ensemble correlation [6], [7], [9]. The
peak search and subpixel peak search is applied to the final
correlation matrix to yield velocity vectors. They are described
in detail below:

1) 2D Cross Correlation: 2D cross correlation between two
images essentially takes a sliding window dot product
of two images (where one image is fixed and other
is shifted horizontally and vertically before taking the
dot product). It should be noted that both the images
are essentially pictures of the same frame taken at
different times. The output of the sliding window dot
product is another 2D matrix, we call that CCF which
computed as shown in equation 1 presented in [6]. Here
f(m,n) and g(m,n) represent the first and the second
subsampled images, respectively, M and N represent the
number of rows and columns in the images. f̄ and ḡ
represent the mean image intensity of the interrogation
window.

C(i, j) =

M∑
m=1

N∑
n=1

[f(m,n)− f̄ ][g(m + i, n + j)− ḡ]

M ×N
(1)

The CCF (i, j) essentially captures the cross correlation
between the image1 and shifted image2. If the image1



and shifted image2 are similar, the cross correlation
value will be higher. Thus, a higher value of CCF depicts
how much has image1 moved horizontally as well as
vertically before image2 is captured. The maximum
value of i and j are called the overlap value and size
of images over which the correlation is performed is
called the interrogation area. The interrogation area
size is specified in length units of a side length. The
cross-correlation can also be realized in the Fourier
domain which is the preferred approach as explained
in Section V-B.

2) Ensemble Correlation: Although this is generally op-
tional in many laboratory PIV applications, given the
noise in our dataset due to using moving sediment as
our seeding particles [1], [2], it is a requirement in our
application. To suppress noise, cross correlation (step
1), is performed over multiple pair of images the sum
is taken for all the CCF matrices before moving to the
next stage. Ensemble correlation can be expressed in
equation 2.

ensemble CCF =

ensemble size∑
i=1

CCFi (2)

In our experiments, we have chosen ensemble size =
16, which is statistically shown to be the minimal
number of ensembles needed provide a strong peak in
the output correlation matrix [7]. This means we are
operating on 32 unique pairs of images, finding 16
unique pairs of CCF, and taking their sum. To clearly
demonstrate the need for ensemble, an example PIV
output is shown with or without the ensemble correlation
in Figure 2.

3) Peak search: Once we have the ensemble CCF (or
single pair if we don’t ensemble), we find the peaks of
the correlation. Since, CCF values depict how closely
image1 and shifted image2 resemble, peaks in the CCF
tell us i and j coordinates with which image2 must be
shifted to get the highest correlation. That (i, j) pair,
gives us one of the possible displacement, 4x, of the
fluid in the given time duration.

4) Sub-pixel Peak Search: The quality of PIV results are
dependent on getting rid of various types of error
sources. One such error is - under resolved optical
sampling of the particle and discretization of particle
positions in to integer pixel locations. Sub-pixel curve-
fitting suppresses this noise using a gaussian (parabolic
is another option) curve to interpolate the displacement
vector in the subpixel level [6]. More discussion and
optimization of this step in not explored in this project.
Interested readers can refer to [6], [10]. This step finally
produces the velocity vectors that we can visualize in a
GUI.

V. EMBEDDED PIV IMPLEMENTATION

Generally PIV is used in controlled laboratory environ-
ments, but a modern application of PIV is the so called Large-

(a) PIV velocity vector output with
just one correlation

(b) PIV velocity vector output with
16 correlation and ensemble aver-
aging

Fig. 2: Two PIV outputs - one without ensemble and one with
16 ensemble average. This noise in the 2a clearly shows the
necessity of the ensemble averaging

Scale PIV (LS-PIV). This variant of PIV focuses on imagery
of large bodies of water usually taken from an UAS [3] or
a helicopter [1], [2] rather than small, usually microscopic
particles, imaged in a laboratory setting [6], [7]. An additional
constraint for applying LS-PIV that has not been adequately
covered by the literature is its implementation on embedded
systems using cameras or optics that would not be feasible for
a long-term, remote deployment. Generally PIV is applied as
a post-processing step after imagery has been collected [1],
[3], but there is a need for a PIV algorithm which can be
applied in real time. This would enable possibilities such as
dynamic tweaking of PIV parameters to best suit a particular
measurement, or allow for remote deployment of LS-PIV
sensors which are resource constrained in battery life, network
bandwidth, and/or processing power.

We will introduce our implementation which describes
optimizations to the PIV algorithm to enable the use of
this algorithm on resource constrained embedded-systems. We
begin by outlining the hardware constraints of the Common-
Sense platform on which we developed our algorithm. The
CommonSense ”stack” includes accurate power measurement
circuits, dubbed PowerDue, for analyzing power and energy
usage of our implementation. CommonSense utilizes an Atmel
SAMD51, a very common 32-bit microcontroller widely used
in embedded applications. We will then analyze the PIV algo-
rithm and detail where possible reductions in computational
complexity, memory complexity, or software architecture can
be included to make the PIV algorithm feasible for low-
power edge-compute devices. Finally we will show the ac-



TABLE I: PIV Memory Utilization

Interrogation Area (px) Direct XCorr FFT XCorr
64x64 32KiB 64KiB
128x128 64KiB 256KiB

curacy impact of these optimizations and outline how various
optimization parameters can be tuned for the each specific
application or deployment.

A. Hardware Limitations

The ATSAMD51 processor on the CommonSense platform
is a 32-bit ARM Cortex-M4 microcontroller which runs at
120MHz; it includes a floating point unit and has variants
which contain up to 256KB of SRAM. Unlike our baseline
provided by the MATLAB PIVLab package [4], [5] which
runs on the desktop (like all other PIV implementations), our
algorithm does not have the luxury of parallel processing or a
large-register vectorized instruction set. The constraint of the
hardware imposes the requirement that the PIV algorithm must
be tractable for real-time scenarios by maintaining a linear
complexity, as only single PIV windows can be computed at
a time.

With these constraints in mind, an analysis of the raw mem-
ory utilization of the PIV algorithm for a single interrogation
area would yield the memory utilizations described in Table I.
Note that the direct cross-correlation memory utilization is
computed with storage for two input window buffers, the
output overwritng on of those buffers in addition to using 32-
bit integers. An actual realization could reduce memory usage
if the cross-correlation was properly bounded allowing for a
smaller integer type to be used. The FFT cross-correlation is
computed with storage for four window buffers. Four windows
are required since no direct real-to-real 2D Fourier transforms
exist and a complex intermediate Fourier representation is
required. Two buffers are used per interrogation area to store
the real and imaginary values. The assumption that the output
overwrites one of the input buffers is held in addition to using
32-bit floats.

Legleiter and Kinzel have done a parameter optimization
for the PIVLab implementation of the PIV algorithm for the
LS-PIV application using helicopter imagery and sediment
seeding rather than manually introduced tracer particles and
have found that across many frame rates, an interrogation
area of less than 50 pixels gives heavily biased results [2].
Interrogation areas greater than 50 pixels (taken at a suffi-
cient measurement frequency) yield similar results regardless
of interrogation area. Additionally larger interrogation areas
being preferred up to 100 pixels where the improvements
in result are not as noticeable. As will be discussed in the
V-B, the FFT cross-correlation is the only approach tractable
for our application which constrains our interrogation area to
be a power of two. Taking a 1Hz imaging rate, the 64x64
pixel interrogation area is the smallest window that must be
supported to yield acceptable results. It is also important to
note the use of KiB units; using the direct cross-correlation,

interrogation areas greater than 128x128 can fit in memory
while FFT cross-correlation approach would not fit at the
same interrogation area in to 265KB of RAM (especially with
other application code). Due to these constraints, utilizing
the much preferred 128x128 pixel interrogation area is not
feasible on our microcontroller without some modifications to
the implementation such as:

• Using Q15 (16-bit) fixed-point floats or 16-bit half pre-
cision floats: may affect accuracy

• Split Radix FFT: may also affect accuracy
• Store parts of the interrogation in off-board memory and

swap where needed: slow
For our application and using a microcontroller which has

DMA, the last option may still be feasible as only a few tens
of kilobytes would need to be stored outside of RAM.

B. Complexity Evaluation

Our optimization techniques take advantage of several
application specific assumptions in the use cases described
previously, each of which includes several caveats for how
the algorithm could be optimized.

Firstly, for the static sensor configuration (if this system is
deployed on the side of a bridge, for example), the position of
the camera relative to the body of water is known. In addition
the areas of interesting flows will be known before hand (or
learned dynamically) and will generally not change over time.
These facts will allow us to only perform PIV for a cross
section of the image a few interrogation areas wide. Secondly,
we know that velocity fields near the bank will be much more
turbulent than at the center of the channel, so we can optimize
our PIV to perform more ensemble near the banks and fewer
at the center without greatly changing the result. Lastly, for
discharge measurements, only a single highly accurate velocity
vector is needed at the deepest part of the channel; this allows
us to have a second measurement mode that focuses in a
smaller area and can yield a more accurate result with more
ensembles.

On the CommonSense platform, we started with an im-
plementation of PIV by Benjamin Pelc3 which was written
in C++ and utilizes the direct (spatial) cross-correlation. For
a single 64x64 pixel interrogation area, this operation took
about 13 minutes and 30 seconds. This is not feasible for the
real time applications that embedded PIV would be typically
deployed for; additionally the long run time would severely
reduce battery life. This is especially true if ensembles or
multiple interrogation areas are desired, which is always the
case. This result does match our O(N4) complexity for the
direct cross-correlation.

We modified Pelc’s imeplementation to use the FFT cross-
correlation yielded much more tractable results, taking 0.2
seconds to run PIV for one 64x64 pixel interrogation area.
Even with this much improved result, it is still not feasi-
ble to perform this window-by-window algorithm on large
areas of the image. As a comparison, the vectorized FFT

3https://github.com/benjaminpelc/pivelocimetry



cross-correlation implementation that is used by PIVLab in
MATLAB, takes 1.23 seconds for an entire image worth of
interrogation areas.

C. Graded PIV

Fig. 3: Illustration of the Graded PIV method. Center interro-
gation areas are showing in red, while edge interrogation areas
are showing in blue. The numbers in each interrogation area
is the size of the ensemble which may be changed. The ratio
of center to edge interrogation areas is also variable.

From the assumptions listed previously we present a
”graded” version of PIV which distributes the density of
ensemble measurements to areas with more turbulent flows
as illustrated in Figure 3. This method reduces the number of
PIV computations required by reducing the total number of
ensembles. Since we are working under the assumption for a
bridge mounted system with both banks in view, our graded
PIV method yields three optimization parameters, the ratio
of ”center” interrogation areas to ”edge” interrogation areas,
the number of images to ensemble for the edge interrogation
areas, and the number of images to ensemble for the center
interrogation areas. Since we also know that the velocity field
vectors should transition smoothly from window to window,
we can further smooth our result (or interpolate bad results) by
applying a Gaussian kernel or any kernel smoothing function.

D. Discharge Measurement PIV

Fig. 4: Illustration of the PIV algorithm optimized for dis-
charge measurements. Note that the size and location of the
focused area is variable in addition to the size of the ensemble.
In this realization all interrogation areas are considered part
of the ”center”.

We also implement a version of PIV which is primarily
aimed at providing single source, high accuracy, measurements
which are suited for measuring discharge of the stream. This
measurement mode focuses on a configurable number of
interrogation areas in a specific portion of the frame. Since the
interrogation area size and step size is already specified glob-
ally for the PIV algorithm, the parameters for this optimization
technique is the number of interrogation areas wide to perform
the surface velocity measurement for measuring discharge and
the number of ensembles to use. For this measurement mode,
it is expected that the number of measurements to ensemble

is quite high to ensure a high accuracy result. Compared to
the graded PIV technique described previously, if the size of
the measured area is kept small in relation to the length of
the channel, fewer PIV computations are required, reducing
the time to yield a measurement and also reducing the power
required. Also, compared to other surface flow measurement
methods for discharge measurement, the USGS uses radar
measurements [1], which like our discharge measurement
mode, takes measurements at a single spot. An advantage of
our optical PIV method over radar is that is is possible to
change the location of measurement on the fly, possibly in an
automatic fashion.

E. Rectangular Interrogation Area

Fig. 5: Rectangular PIV cross-correlation matrix of centered
about window 2610 from the Alaska Dataset [2] that is 128x64
pixels.

A final optimization that we have implemented in our
PIV algorithm is the ability to use non-square interrogation
areas. This can be visualized in Figure 5 which matches the
baseline in Figure 6. For the dataset we were analyzing, we
found little variance between the result using a non-rectangular
interrogation area. For our application, the use of rectangular
windows can offer two improvements.

If the interrogation area is elongated in the direction of
stream flow, the additional data in the direction of movement
would allow for more particles to “track” which can yield
more accurate results. If the interrogation area is elongated in
the direction perpendicular to stream flow, the total number of
interrogation areas can be reduced by increasing the step size
between adjacent interrogation areas. This reduction would
reduce computation time and increase battery life.

F. Accuracy Evaluation

To test the accuracy of our implementation, we compared
the results of the cross-correlation and final displacement
vector to that of the PIVLab implementation.

As seen in Figures 6 and 9, it is clear that these optimiza-
tions do not effect the FFT cross-correlation in any way.

As seen in Figures 8 and 9, it is clear that our implementa-
tion matches that of the baseline provided by PIVLab for the
Alaska Dataset [2].



Fig. 6: Cross correlation matrix of window 2610 from Alaska
Dataset [2] from PIVLab.

Fig. 7: Our implementation of cross-correlation matrix for
interrogation area 2610 between images 1 and 2 of the
Alaska dataset [2]. Magnitude: 10.273 (PIXELS/s = 1.54m/s)
Direction: (-1, 0.1007). Note the change in sign, the MATLAB
output is reoriented 180◦ such that North is up, opposite of
our implementation

G. Application Optimization Parameters

From the two measurement methods described above to
reduce the computation time (and energy consumption) of the
PIV algorithm, we end up with a total of seven optimization
parameters: one for the ratio of measurements between the two
types, four from the graded PIV approach to retrieve a velocity
field, and two for the discharge measurement approach. This
is visualized by Figure 10. The optimization for rectangular
interrogation areas are omitted here as they should be applied
after the optimizations listed in Figure 10 are tuned to the
specific application.

VI. APPLICATION ENERGY USAGE

We have directly tested the power consumption of running
PIV on the CommonSense boards through PowerDue as shown

Fig. 8: PIVLab displacement vector plotted on the interroga-
tion area from image 1 of the Alaska dataset [2] Magnitude
1.6834(m/s) Direction: (-1, -0.0108).

Fig. 9: While our implementation matches that of the PIVLab
implementation, we include a comparison between our result
(cyan) and the ground-truth values (red) measured via ADCP.

in Figure 11. The current consumption is roughly 50 mA and
takes 200 ms to execute a PIV analysis between a pair of
64x64 pixel sized images. A power analysis with the device
using 1580x64 image sizes sampled 8 times per hour (12 hours
a day) yields a rating of 0.53 years for a 12,000 mAh battery.
The main contributor to power loss stems from the fact that
a single comparison of the algorithm takes 200 ms, and the
algorithm is repeatedly run for ensembling effects. With these
parameters, we run the PIV algorithm 224 times, which leads
to the device being on for almost 10% of the hour. Leaving
the processor on contributes to 99.6% of the device’s power
consumption, as seen in Figure 12. In comparison, the LoRa
radio takes less than 1% of the total energy from the battery.
The power analysis does not take into account camera usage
from sampling.

To remedy our low lifespan problem, the device can use
environment-specific knowledge to swap between modes to



Fig. 10: Break down of the optimization parameters by mea-
surement type. In this figure, ”windows” are referring to
interrogation areas.

Fig. 11: Power measurement of running PIV on a pair of 64x64
pixel sized images.

optimize usage of energy. The contributing factor for power
consumption is the time spent by the processor being awake.
As the processor speed can only be marginally changed, power
consumption relies on reducing the number of PIV iterations
required for analysis. The optimization modes described take
advantage of using less interrogation areas as a trade off
between power consumption and the velocity result accuracy.
Knowing the physical attributes of the system allows for the
device to swap between optimization modes. Once deployed,
the device can develop a history of predicted values over time.
Overall, large streams do not change rapidly in direction and
magnitude over an 8 minute time period. Thus, the device
can use a smaller number of ensembles, interrogation area,
and interrogation area sizes to calculate the velocity vectors.
The discharge measurement mode takes advantage of this and
utilizes stream depth to calculate the discharge rate of the
stream. If the device detects major changes within the stream
velocity, it can revert back to a velocity measurement mode

Fig. 12: Holistic power analysis of running PIV on a pair of
64x64 sampled 8 times/hour.

in which it computes PIV over a larger portion of the image.
The optimization parameters that we can vary in Figure 10 will
depend on the surrounding environment the device is installed.

Fig. 13: 10 samples/hour on image size 1580x64. Varying
between discharge and velocity mode significantly increases
battery life by 4x.

Varying the device mode can greatly extend the lifetime of
the device. Figure 13 describes a scenario where the device
sends 10 samples per hour for a 1580x64 pixel sized image,
we have selected the velocity mode to take 8 and 4 center
and edge interrogation areas respectively with ensemble size
8 and 12 respectively. The discharge mode takes a 128x128
image with ensemble size 8 with a step size of 1 interrogation
area. We then varied the amount of samples taken for each
mode per hour. As expected, we get a greater lifespan of the
battery when we use less interrogation areas to compute the
velocity vectors. The lifespan of the device almost quintuples
by reducing the number of interrogation areas from 224 to 48.

For ensemble sizes, 16 ensembles would reduce noise by
90% [7]. The ensemble sizes chosen were design parameters
that we varied to balance time spent vs. accuracy lost. We
determined that 8 and 4 are good ensemble sizes for the
Alaskan data set as center interrogation areas have less noise
and variance compared to edge windows. We used a 128x128
pixel image size for the discharge mode as the Alaska data
we used to test had a 15cm/pixel conversion rate giving us a
19.2x19.2 m2 interrogation area [2]. This conversion rate is
larger than most bridge-mounted scenarios as these Alaskan
images were taken aerially from a helicopter. The pixel/m
conversion would likely decrease in a bridge-mounted case
where the camera is much closer to the water. The number
of interrogation areas needed for good velocity measurements
would need to increase to account for smaller camera FOVs.

VII. REFLECTION AND FUTURE WORK

Through this project, we’ve learned that in real-life IoT
applications, space complexity (which is usually ignored in
modern programming) is a pressing issue. A 64x64 interro-
gation area size is the bare minimum to achieve good results
and is the limit we can put on the CommonSense board. Time
complexity is also a concern, but those are often immediately
identified. We designed trade offs solutions in both spatial and



temporal domains: using less interrogation areas and having
more hardware support.

The CommonSense architecture we had planned to use for
the PIV algorithm has both limitations in speed and space.
Ideally the hardware running the PIV algorithm have more
RAM or utilize hardware components that are dedicated for
FFT operations. In terms of space, the CommonSense board
has a limit of 250MB of RAM. We could not compute the FFT
for interrogation areas of 128x128 pixels. 64x64 pixels is the
minimum for the PIV algorithm’s accuracy to be acceptable, so
it would be desirable to run 128x128 sized FFTs. Padding the
64x64 for accurate FFTs is also impossible as it requires the
dimensions of the interrogation area to double. Computation
time correlates to power spent. Our power analysis indicates
that the processor is the bottleneck of the power consumption,
responsible for 99.6% of the power consumption. Having a
faster computation for the cross correlation will save us more
energy. As an FPGA can easily finish computation much faster
than our CPU can, and we believe that the startup delay and
energy of running an FPGA is much smaller than the time
spent computing on the CPU. By Amdahl’s Law, we can
do little to improve the system through other means either
than reducing the amount of time the processor spends on
computing the PIV algorithm.

For future iterations of the project, the PIV algorithm would
be mutated to account for more dynamic settings. The PIV al-
gorithm is dependent on the quality of the image capture, and it
requires ample sunlight for good images. This limits capturing
optical images to daytime. One could circumvent this by using
an infrared camera, but using infrared images tend to have a
lower image quality than optical images. More preprocessing
would be necessary to achieve good results on infrared images.
Ideally, this algorithm would run atop of a drone hovering over
a stream, so many steps of preprocessing would be required
to achieve this. The incoming images would need stabilization
and geological information of the location/angle of the camera
to accurately calculate the velocity vectors of the stream. The
CommonSense architecture also requires drivers to be written
for the QSPI interface with its flash memory.

ACKNOWLEDGMENT

We would like to thank Carl Legleiter, Paul Kinzel, and
Mathieu Marineau from the USGS for this opportunity and
help. We would also like to thank Bob Iannucci, Eve Hu, and
Reese Grimsley for their help and support on the Common-
Sense platform.

REFERENCES

[1] P. Kinzel and C. Legleiter, “suas-based remote sensing of river discharge
using thermal particle image velocimetry and bathymetric lidar,” Remote
Sensing, vol. 11, p. 2317, 10 2019.

[2] C. Legleiter and P. Kinzel, “Inferring surface flow velocities in sediment-
laden alaskan rivers from optical image sequences acquired from a
helicopter,” Remote Sensing, vol. 12, p. 1282, 04 2020.

[3] M. Detert and V. Weitbrecht, “A low-cost airborne velocimetry system:
Proof of concept,” Journal of Hydraulic Research, vol. 53, 08 2015.

[4] W. Thielicke and E. J. Stamhuis, “Pivlab – towards user-friendly,
affordable and accurate digital particle image velocimetry in matlab,”
Journal of Open Research Software, vol. 2, 10 2014.

[5] W. Thielicke, “The flapping flight of birds: Analysis and application,”
Ph.D. dissertation, University of Groningen, 2014.

[6] D. Dabiri, “Cross-correlation digital particle image velocimetry – a
review,” 2007.

[7] E. Delnoij, J. Westerweel, N. Deen, J. Kuipers, and W. van
Swaaij, “Ensemble correlation piv applied to bubble plumes
rising in a bubble column,” Chemical Engineering Science,
vol. 54, no. 21, pp. 5159 – 5171, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000925099900233X

[8] J. Santiago, S. Wereley, C. Meinhart, D. Beebe, and R. Adrian, “A parti-
cle image velocimetry system for microfluidics. exp fluid,” Experiments
in Fluids, vol. 25, pp. 316–319, 09 1998.

[9] C. Willert, “Adaptive piv processing based on ensemble correlation,” 07
2008.

[10] B. Triggs, “Optimal filters for subpixel interpolation and matching.”

APPENDIX

Planned schedule and actual end date of our project is as
follows:

ID task plan actual

1
Use MATLAB Autocoder

to embedded C 11/4 11/4
1.1 Evaluate task 1 11/16 11/16

2
Reimplement MATLAB code

in embedded C 11/4 11/6
2.1 Complexity analysis of algorithms 11/9 11/9

3

Evaluate performance and energy
differences between Autocoded and

embedded code 11/16 11/16
4 Optimize V1 algorithm complexity 11/23 11/23

5

Analyze algorithm accuracy with
1D cross correlation and

non-uniform windows - 11/24

6
Analyze algorithm accuracy and SNR
performanc ewith(out) multipass DFT - 11/24

7
Analyze Tradeoff the direct vs

Fourier cross correlation - 11/24

8
Evaluate performance and energy of

optimized algorithm on CommonSense 12/7 11/28

9
Rework V1 algorithm accuracy

and/or performance into V2 12/4 12/4

10
Analyze V2 algorithm accuracy,

performance, and energy 12/11 12/11


