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Problem Statement

The USGS measures stream flows since they are “critical for long-term tracking and 
modeling/forecasting to ensure that Federal water priorities and responsibilities can be met” 1. PIV is 
a widely used algorithm used for measuring stream flows using optical data, but can be 
computationally intensive, so it is performed as a post-processing step after data collection2. 
Currently no open-source systems exist which can perform PIV in real-time on the remotely 
deployed sensors which collect the data.

2
1. https://www.usgs.gov/special-topic/water-science-school/science/how-streamflow-measured
2. Legleiter, C.J.; Kinzel, P.J. Inferring Surface Flow Velocities in Sediment-Laden Alaskan Rivers from Optical Image Sequences Acquired from a Helicopter. 

Remote Sens. 2020, 12, 1282. 

https://www.usgs.gov/special-topic/water-science-school/science/how-streamflow-measured
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Stakeholder Use Cases

- Bridge mounted PIV sensor

- UAS mounted

Image 
Acquisition

Image 
Preprocessing PIV Algorithm

Data 
Formatting 
and Upload

Image & 
Location 

Acquisition

Image 
Preprocessing PIV Algorithm

Data 
Formatting 
and Upload

Image 
Alignment

Components of the pipeline our project is specifically scoped for
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Stakeholder Requirements

- Ported PIV algorithm for stream flow measurement to embedded device for real time in-situ 
measurements

- Measurement updates faster than current standard: 15min
- Ported algorithm accuracy matches PIVLab and ground truth measurements
- Lifetime of 3 months to a year

4
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Our Project Goals

- Create an embedded version of the PIV algorithm targeted to run in real-time on embedded 
systems

- Target the CommonSense Platform
- Benchmark accuracy against PIVLab implementation
- Benchmarks accuracy against ground-truths computed previously by USGS

- Optimize algorithm & software architecture:
- Energy use
- Computational time
- Application specific requirements

- Clearly define energy budget and interfaces to our CommonSense code and start early system 
design for final end product

5
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Project Design Use Cases

PIV algorithm on CommonSense can be viewed as solely compute MPU
- User deploys battery powered sensor on bridge mount scenario

- Energy budget for several configurations for long term, low measurement rate 
deployment

- Several operating modes for type of measurements, measurement rate, etc.
- User deploys battery powered sensor on UAS scenario

- Energy budget for several configurations for short term, high measurement rate 
deployment
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System Architecture

● CommonSense Board
○ LoRa Daughter Board

● Camera
● Hardware requirements are light

The scope of our project is focusing 
solely on the PIV algorithm optimized 
for CommonSense.
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Algorithm Architecture: Components of PIV

2D Cross 
Correlation Peak Search

Ensemble 
Results

(Optional)

Gaussian 
Subpixel 

Interpolation
2 Images Displacement

Vectors

Ensemble - Nothing fancy. Just average of 2D cross correlation matrices for multiple 
pair of images (ensemble length 16 means 32 images in total, 2 taken in pair to 
produce a total of 16 2D Cross correlation matrix)

Ensembling rejects noise.



9
9
9

9

Algorithm Architecture: Components of PIV

- 2D Cross Correlation
- Outputs a 2D matrix of window correspondence values at different window shifts

- Peak Search
- Distance from image center to highest peak gives velocity vector

- Ensemble Method
- Filters noise of a single window area with cross-correlated windows

- Gaussian Subpixel Interpolation
- Find velocity vectors between resolution of pixels
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Evaluation: Accuracy (Interrogation Area)

- One tradeoff between direct and FFT cross-correlation is interrogation area constraints
- Minimum FFT size that has reasonable results is 64x64
- Larger window sizes (128x128) are preferred
- CommonSense is memory constrained

PIV Parameter optimization performed by Carl Legleiter and Paul Kinzel, showed that a 50px interrogation 
window (window side length) was the minimum size that gave reliable results
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Evaluation: Hardware Limitations affecting Accuracy 

- Images stored as uint8_t in flash memory
- 2D FFTs do not have direct real-real transformation, a complex (float) intermediate 

representation is required
- Images stored as floats in ram

- 2x 64x64 windows: 32kB
- 2x 64x64 temporary storage for imaginary values: 32kB
- Theoretical minimum: 64kB 
- Can store additional windows in RAM for quicker ensemble correlation

- 128px Interrogation Area memory usage
- 4x 128x128 float arrays: 262kB minimum to perform 2D FFT
- Will NOT fit in CommonSense’s (ATSAMD51P20A) 256kB RAM without extra work
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Evaluation: Hardware Limitations affecting Accuracy 

- 262kB for 2D FFT larger than CommonSense’s 256kB RAM
- Solutions:

- Use Q15 fixed-point floats or 16-bit half-precision floats
- Could affect accuracy of result

- Split Radix FFT
- More complex implementation, still need to store some of the results in flash memory

- Store parts of FFT result in offboard memory
- Most optimal solution if 128px Interrogation Areas desired
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Evaluation: Accuracy

- Our cross-correlation and windowing implementation matches 
that of PIVLab (Matlab)

PIVLab (Matlab) cross-correlation matrix for 
window 2610 between images 1 and 2 of the 
Alaska dataset

Our implementation of cross-correlation 
matrix for window 2610 between images 1 and 
2 of the Alaska dataset
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Evaluation: Accuracy

- Our cross-correlation and windowing implementation matches that of PIVLab (Matlab)
- Our peak search implementation matches that of PIVLab
- The implementation of Gaussian Subpixel Interpolation varies very slightly within the 

subpixel region

PIVLab displacement vector plotted on the 
window from image 1 of the Alaska dataset
Magnitude 1.6834(m/s) Direction: (-1, -0.0108)

Our implementation of cross-correlation matrix for window 
2610 between images 1 and 2 of the Alaska dataset
Magnitude: 10.273 (PIXELS/s = 1.54m/s) Direction: (-1, 
0.1007)
Note the change in sign, the MatLab output is reoriented 
180deg such that North is up, opposite of our implementation
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Evaluation: Acoustic Doppler Current Profiler (ADCP)

- Our algorithm was designed based off of PIVLab and Benjamin Pelc’s Pivelocimetry
- Comparing the results from the Alaska Dataset against the ground truth measurements

- Results are quite close

Comparing the accuracy of our embedded PIV implementation (cyan) against the ground truth values (red).
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Evaluation: Time Complexity

- PIVLab is able to compute PIV on a pair of images (4272 windows) in 1.23 
seconds

- Vectorized FFT approach allows the cross correlation for each window to be performed in 
parallel

- Our direct cross-correlation implementation followed the O(N^4) scaling and 
proved unfeasible for the application and hardware

- 13min 30s for a single 64x64 pixels window
- Our FFT cross-correlation implementation is feasible for the realtime nature of 

the application
- 0.2s for a single 64x64 window
- Still not feasible to perform PIV across the entire image, not even including ensembling yet...
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Time Complexity Optimization

- Application use case have several givens which can be leveraged:
- For static mounting: areas of interesting flows usually will not move over time
- The location of the sensor relative to the stream is known ahead of time
- Surface flows are much smoother at the center of the channel compared to near the banks
- Only surface flow rate near the center of the channel is needed to compute the discharge rate

A Hydrologic Technician manually measures streamflow at USGS streamgaging station 13063000 in Idaho.
Credit Marshall Williams USGS
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Time Complexity Optimization Approach

- Number of images in ensemble correlation is parameter for tradeoff between PIV accuracy and 
PIV speed

- Our approach:
- Include more images in the ensemble correlation for windows close to the bank
- Fewer images in the ensemble correlation for windows near the center of the channel
- Perform PIV only for a small strip of the full image
- Have an option for non-square PIV windows
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Velocity Field Measurements: Graded PIV

- Velocity field measurements require performing PIV across a wider area of the image
- Due to speed of CommonSense processor only feasible to get velocity measurement of a 

narrow cross section of stream at a time (a few windows wide)
- Taking advantage of the localized turbulent flows - Graded PIV approach:

- More turbulent flows near banks, larger ensemble size (e.g. 16)
- Smoother flow at center of stream, smaller ensemble size (e.g. 4)
- Flows from bank to center should transition smoothly, apply a gaussian kernel

- A scaled down version of this is as shown below:
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Discharge Measurement PIV

- For the discharge measurement, we only need to focus on the central squares
- E.g. 256*256 pixels in the middle of the window of interest
- Giving us in total 16 windows of 64*64

- Do obtain precise results, the ensemble size for all windows should be high
- Experimentally determined 12-16

- Faster and more power efficient than velocity measurement across whole width
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Rectangular PIV Window

- Implemented, analysis in progress
- Stream will always* flow in one direction

- “Tracked” particles will tend to flow in that direction
- Yields better cross-correlation results 

- Rectangular PIV allows for fewer computations to be performed:
- Increasing stride length thereby reducing number of windows required (FFT is still O(nlogn) )

Rectangular cross correlation matrix centered at the position 
for square-window 2610.

Square-Window Cross-correlation matrix for window 2610 for 
reference.
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Evaluation: Energy for processing images
- 0.2 sec for single 64*64 window (one part of the image)
- V_meas_ave = 1.27 (V)   =>  I = 50.8 (mA), V_load = 3.25 (V), P = 165 (mW)
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Evaluation: Energy Usage 

- 0.532 years if we transmit the result 8 times / hour 
- Result = 128 bytes (vel_x, vel_y, start_x, start_y, peak_correlation_value, timestamp)
- Have not included power consumption of camera

Power consumption if transmit 8 times / hour
(1580 * 64, battery = 12000mAh) 
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Optimization Parameters

Ratio of measurement 
modes
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Comparison of Modes Affecting Battery Life

10 samples an hour
(1580, 64) image size
Velocity Mode
# Center Windows: 8
Center Ensembles: 4
# Edge Windows: 8
Edge Ensembles: 12

Discharge Mode
Area: 256x256
Ensembles: 12
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Proposed Hardware Design

● Expanded RAM OR Low Power FPGA Daughterboard for CommonSense
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Future steps

- Design algorithm to be robust to additional scenarios
- Focus on daytime, and optical images

- Stakeholder stretch goals
- Continuous monitoring application
- Image stabilization
- Pre processing and tag geological info at the device

- Implement CommonSense features
- QSPI Flash
- Integrate with camera system & LoRa radio
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Lessons Learned

- Time and Space complexity are large considerations for IoT applications (Spatial->FFT)
- 13 min -> 0.25 seconds, a 3000x speedup
- 64x64 is the minimum for accuracy (and it shows)

- This is a potential scenario where the constraints make flash memory computation feasible
- Using hardware-accelerated computation saves time and energy
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Thank you

Any questions?
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Extra slides
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Direct v.s. FFT Cross-Correlation

- Direct approach advantages over FFT
- Smaller space complexity (no extra buffers required)
- Aliasing is not a problem

- FFT Aliasing
- CommonSense is so space-constrained that zero-padding the image prior to FFT is not 

feasible
- CommonSense version does not zero-pad but implementation seems to matche MatLab


